ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations
نویسندگان
چکیده
We analyze how the characteristics of El NiñoSouthern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.
منابع مشابه
ENSO Evolution and Teleconnections in IPCC’s Twentieth-Century Climate Simulations: Realistic Representation?
This study focuses on the assessment of the spatiotemporal structure of ENSO variability and its winter climate teleconnections to North America in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) simulations of twentieth-century climate. The 1950–99 period simulations of six IPCC models are analyzed in an effort to benchmark models in the simulation of this...
متن کاملENSO in the Mid-Holocene according to CSM and HadCM3
The offline linearized ocean–atmosphere model (LOAM), which was developed to quantify the impact of the climatological mean state on the variability of the El Ni~ no–Southern Oscillation (ENSO), is used to illuminate why ENSO changed between the modern-day and early/mid-Holocene simulations in two climate modeling studies using the NCAR Climate System Model (CSM) and the Hadley Centre Coupled M...
متن کاملA New Tool for Evaluating the Physics of Coupled Atmosphere-Ocean Variability in Nature and in General Circulation Models
Intermediate models of the coupled tropical atmosphere-ocean system have been used to illuminate the physics of interannual climate phenomenon such as El Niño – Southern Oscillation (ENSO) in the tropical Pacific and to explore how the tropics might respond to an forcing such as changing insolation (Milankovitch) or atmospheric carbon dioxide. Importantly, most of the intermediate models are co...
متن کاملCorrelative Evolutions of ENSO and the Seasonal Cycle in the Tropical Pacific Ocean
This study examines whether shifts between the correlative evolutions of ENSO and the seasonal cycle in the tropical Pacific Ocean can produce effects that are large enough to alter the evolution of the coupled atmosphere–ocean system. The approach is based on experiments with an ocean general circulation model (OGCM) of the Pacific basin, in which the seasonal and nonseasonal (interannually va...
متن کاملA Simple Model for the Pacific Cold Tongue and ENSO*
A conceptual model is constructed based upon the Bjerknes hypothesis of tropical atmosphere–ocean interaction. It is shown that strong feedbacks among the trade winds, equatorial zonal sea surface temperature contrast, and upper-ocean heat content occur in the tropical Pacific basin. Coupled atmosphere–ocean dynamics produce both the strong Pacific cold-tongue climate state and the El Niño–Sout...
متن کامل